The effect of low-level laser irradiation on free radical processes in the mitochondrial fractions induced by the Bisphenol A administration

Authors

  • Vira Borschovetska Yuriy Fedkovych Chernivtsi National University
  • Mykhailo Marchenko Yuriy Fedkovych Chernivtsi National University
  • Vitalina Ivantsiv

Keywords:

low-level laser irradiation, bisphenol A, antioxidant system, free radicals

Abstract

Bisphenol A (BPA), the xenoestrogen and plasticizer, can induce mitochondrial dysfunction via the shift in the balance between oxidants and antioxidants. Low-level laser irradiation may influence oxidative stress parameters by changing the activity of antioxidant enzymes and the production of ROS. Our study aimed to investigate the effect of low-level laser irradiation on oxidative stress parameters in hepatic mitochondrial fractions of rats under the conditions of BPA administration. The BPA was administered per os daily for 3 days at a dose of 50 mg/kg body weight. Low-level laser irradiation was performed after each or last administration of xenobiotic. The activity of antioxidant enzymes and the content of free radicals was spectrophotometrically determined in the mitochondrial fraction of the liver. Short-term BPA exposure results in the induction of free radical processes in hepatic mitochondria by the enhanced generation of O2• –and decreased activity of antioxidant enzymes. At the same time, low-level laser irradiation reduces the prooxidant effect of this xenobiotic in mitochondria by the enhancement of the antioxidant activity, which is primarily associated with conformational changes induced by a short-term increase in the temperature of light-absorbing biomolecules. This effect was observed only in the case of LLLI after BPA exposure.

References

Amjad S, Rahman S, Pang M. Role of Antioxidants in Alleviating Bisphenol A Toxicity. Biomolecules. 2020;10(1105):1-26. https://doi.org/10.3390/biom10081105

Auclair C., Voisin E. Nitroblue tetrazolium reduction. In: Greenwald RA, ed. Handbook of Methods for Oxygen Radical Research. Boca Raton, Fla. : CRC Press; 1985:123-132.

Avci P, Gupta A, Sadasivam M, et al. Low-level laser (light) therapy (LLLT) in skin: Stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32(1):41-52.

Baxter GD, Liu L, Petrich S, et al. Low level laser therapy (Photobiomodulation therapy) for breast cancer-related lymphedema: a systematic review. BMC Cancer. 2017;17(1):833-846. https://doi.org/10.1186/s12885-017-3852-x

Bindhumol V, Chitra KC, Mathur PP. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology. 2003;188(2-3):117-124. doi:10.1016/S0300-483X(03)00056-8

Cimmino I, Fiory F, Perruolo G, et al. Potential mechanisms of bisphenol a (BPA) contributing to human disease. Int J Mol Sci. 2020;21(16):1-22. https://doi.org/10.3390/ijms21165761

Denadai AS, Aydos RD, Silva IS, et al. Acute effects of low-level laser therapy (660 nm) on oxidative stress levels in diabetic rats with skin wounds. J Exp Ther Oncol. 2015;11:85-89.

Eid JI, Eissa SM, El-Ghor AA. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring. J Basic Appl Zool. 2015;71:10-19. https://doi.org/10.1016/j.jobaz.2015.01.006

Erdemli ME, Ekhteiari Salmas R, Durdagi S, et al. Biochemical changes induced by grape seed extract and low level laser therapy administration during intraoral wound healing in rat liver: an experimental and in silico study. J Biomol Struct Dyn. 2018;5:1-16 https://doi.org/10.1080/07391102.2017.1305297

Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58-62. https://doi.org/10.22037/2010.v5i2.5540

Ferraresi C, Hamblin MR, Parizotto NA. Low-level laser (light) therapy (LLLT) on muscle tissue: Performance, fatigue and repair benefited by the power of light. Photonics Lasers Med. 2012;1(4):267-286. https://doi.org/10.1515/plm-2012-0032

De Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):1-37. https://doi.org/10.1109/JSTQE.2016.2561201

Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2-3):143-151. https://doi.org/10.1016/0009-8981(91)90067-M

Gupta BL. Microdetermination techniques for H2O2 in irradiated solutions. Microchem J. 1973;18(4):363-374. https://doi.org/10.1016/0026-265X(73)90059-3

Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem. 2020;204:112607. https://doi.org/10.1016/j.ejmech.2020.112607

Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine. Clarendon.; 1989.

Hassan ZK, Elobeid MA, Virk P, et al. Bisphenol А induces hepatotoxicity through oxidative stress in rat model. Oxid Med Cell Longev. 2012;2012:1-6. https://doi.org/10.1155/2012/194829

Jackson RF, Roche GC, Wisler K. Reduction in Cholesterol and Triglyceride Serum Levels Following Low-Level Laser Irradiation : A Noncontrolled, Nonrandomized Pilot Study. Am J Cosmet Surg. 2010;27(4):177-184.

Jówko E, Maciej P, Cie M, Sacewicz T, Cie I, Jarocka M. The effect of low level laser irradiation on oxidative stress, muscle damage and function following neuromuscular electrical stimulation. A double blind, randomised, crossover trial. BMC Sports Sci Med Rehabil. 2019;11(38):1-14.

Kabuto H, Hasuike S, Minagawa N, Shishibori T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res. 2003;93(1):31-35. https://doi.org/10.1016/S0013-9351(03)00062-8

Kang JH, Katayama Y, Kondo F. Biodegradation or metabolism of bisphenol A: From microorganisms to mammals. Toxicology. 2006;217:81-90. https://doi.org/10.1016/j.tox.2005.10.001

Kazemi S, Mousavi SN, Aghapour F, Rezaee B, Sadeghi F, Moghadamnia AA. Induction effect of bisphenol a on gene expression involving hepatic oxidative stress in rat. Oxid Med Cell Longev. 2016;2016:12-14. https://doi.org/10.1155/2016/6298515

Kitagawa, Y., Sugimoto E. Estimation of the in vivo translational activity of rat liver mitochondria without use of an antibiotic. J Biochem. 1980;88(3):689-693.

Levine RL, Garland D, Oliver CN, et al. Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods Enzymol. 1990;186:464-478. https://doi.org/10.1016/0076-6879(90)86141-H

Lin WX, Fifis T, Malcontenti-Wilson C, et al. Induction of Th1Immune responses following laser ablation in a murine model of colorectal liver metastases. J Transl Med. 2011;9(1):83. https://doi.org/10.1186/1479-5876-9-83

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-Phenol Reagent. J Biol Cemistry. 1951;193(1):265-275. https://doi.org/10.1016/0304-3894(92)87011-4

Mahdavinia M, Alizadeh S, Atefeh Raesi V, et al. Effects of quercetin on bisphenol A-induced mitochondrial toxicity in rat liver. Iran J Basic Med Sci. 2019;22(5):499-505. https://doi.org/10.22038/ijbms.2019.32486.7952

Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. Published online 1972.

Moon MK, Kim MJ, Jung IK, et al. Bisphenol A Impairs Mitochondrial Function in the Liver at Doses below the No Observed Adverse Effect Level. J Korean Med Sci. 2012;27:644-652.

Moustafa GG, Ahmed AAM. Impact of prenatal and postnatal exposure to bisphenol A on female rats in a two generational study: Genotoxic and immunohistochemical implications. Toxicol Reports. 2016;3:685-695. https://doi.org/10.1016/j.toxrep.2016.08.008

Murphy ME, Kehrert JP. Oxidation state of tissue thiol groups and content of protein carbonyl groups in chickens with inherited muscular dystrophy. Biochem J. 1989;260(2):359-364. https://doi.org/10.1042/bj2600359

National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th Ed. National Academies Press; 2011. https://doi.org/10.2307/1525495

National Toxicology Program U.S. Department of Health and Human Services, Center. NTP-CERHR Monograph on the Potential Human Reproductive and Developmental Effects of Bisphenol A. Center for The Evaluation of Risks To Human Reproduction; 2008.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-358. https://doi.org/10.1016/0003-2697(79)90738-3

Oliveira-Junior MC, Monteiro AS, Leal-Junior ECP, et al. Low-level laser therapy ameliorates CCl4-induced liver cirrhosis in rats. Photochem Photobiol. 2013;89(1):173-178. https://doi.org/10.1111/j.1751-1097.2012.01211.x

Ooe H, Taira T, Iguchi-Ariga SMM, Ariga H. Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicol Sci. 2005;88(1):114-126. https://doi.org/10.1093/toxsci/kfi278

Oron U, Maltz L, Tuby H, Sorin V, Czerniak A. Enhanced liver regeneration following acute hepatectomy by low-level laser therapy. Photomed Laser Surg. 2010;28(5):675-678. https://doi.org/10.1089/pho.2009.2756

Paglia, D.E., Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158-169.

S. Bliss. Rodent Anesthesia. Cornell Univ Institutional Anim Care Use Committee, Acup 10102. Published online 2012:1-8.

Sakuma S, Nakanishi M, Morinaga K, Fujitake M, Wada SI, Fujimoto Y. Bisphenol A 3,4-quinone induces the conversion of xanthine dehydrogenase into oxidase in vitro. Food Chem Toxicol. 2010;48(8-9):2217-2222. https://doi.org/10.1016/j.fct.2010.05.051

Shmarakov IO, Borschovetska VL, Blaner WS. Hepatic detoxification of Bisphenol A is retinoid-dependent. Toxicol Sci. 2017;157(1):141-155. https://doi.org/10.1093/toxsci/kfx022

Slater EC, Borner WD. The effect of fluoride on the succinic oxidase system. Biochem J. 1952;52:185-196. https://doi.org/10.1042/bj0520185

Sonavane M, Gassman NR. Bisphenol A co-exposure effects: A key factor in understanding BPA’s complex mechanism and health outcomes. Crit Rev Toxicol. 2019;49(5):371-386. https://doi.org/10.1080/10408444.2019.1621263

Takhtfooladi MA, Takhtfooladi HA, Khansari M. The effects of low-intensity laser therapy on hepatic ischemia-reperfusion injury in a rat model. Lasers Med Sci. 2014;29(6):1887-1893. https://doi.org/10.1007/s10103-014-1603-7

Thompson SM, Callstrom MR, Knudsen BE, et al. Molecular bioluminescence imaging as a noninvasive tool for monitoring tumor growth and therapeutic response to MRI-guided laser ablation in a rat model of hepatocellular carcinoma. Invest Radiol. 2013;48(6):413-421. https://doi.org/10.1097/RLI.0b013e31827a4a3f

Tomazoni SS, Machado CDSM, De Marchi T, et al. Infrared Low-Level Laser Therapy (Photobiomodulation Therapy) before Intense Progressive Running Test of High-Level Soccer Players: Effects on Functional, Muscle Damage, Inflammatory, and Oxidative Stress Markers - A Randomized Controlled Trial. Oxid Med Cell Longev. 2019;2019:1-11. https://doi.org/10.1155/2019/6239058

Toxicological and Health Aspects of Bisphenol A: Report of Joint FAO/WHO Expert Meeting 2-5 November 2010 and Report of Stakeholder Meeting on Bisphenol A, 1 November 2010 Ottawa, Canada.; 2011.

Wazir U, Mokbel K. Bisphenol A: A concise review of literature and a discussion of health and regulatory implications. In Vivo (Brooklyn). 2019;33(5):1421-1423. https://doi.org/10.21873/invivo.11619

Yin. W, Robyn. B, Alycia. N, Siegfired. H. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915-1928.

Zecha JAEM, Raber-Durlacher JE, Nair RG, et al. Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer. 2016;24(6):2781-2792. https://doi.org/10.1007/s00520-016-3152-z.Low

Downloads

Published

2021-07-07

Issue

Section

BIOCHEMISTRY, BIOTECHNOLOGY, MOLECULAR GENETICS