THE APPLICATION OF YEAST RHODOTORULA GLUTINIS FOR CULTIVATION OF SIMOCEPHALUS VETULUS (MÜLLER, 1776) UNDER THE LABORATORY CONDITIONS

Authors

  • O. V. Kushniryk Yuriy Fedkovych Chernivtsi National University
  • М.М. Marchenko Yuriy Fedkovych Chernivtsi National University
  • О.І. Khudyi, 6186098 Yuriy Fedkovych Chernivtsi National University
  • L. M. Vasina Yuriy Fedkovych Chernivtsi National University
  • L. V. Khuda Yuriy Fedkovych Chernivtsi National University
  • О. М. Kavulya Yuriy Fedkovych Chernivtsi National University

Abstract

The usage of live feeds on the early stages of fish post-embryonic development has a positive effect on the fry survival and growth processes. Zooplankton which commonly used as live food is not able to synthesize such important groups of substances for normal development of animal organism as carotenoids, but only to their accumulation. In this regard, the important issue is the development of technology in vivo saturation of forage organisms by carotenoids. The different groups of organisms, including algae of the genus Haematococcus and yeast of genera Rhodosporidium, Rhodotorula and Phaffia, can serve as industrial producers of carotenoids. Given that for growing laboratory cultures of planktonic crustaceans the yeast Saccharomyces cerevisiae is traditionally used, the appropriate trend in the biotechnology of zooplankton cultivation is application of yeast, but capable of carotenogenesis. One of such species is Rhodotorula glutinis. In assessing the qualitative composition of carotenoids in R. glutinis it was used a variety of solvents in the following combinations: acetone-benzene- petroleum ether-hexane (10:10:3:10), benzene-acetone-chloroform (5:5:4), hexane-benzene (9:1) and chloroform. Their use has allowed to detect the presence of one chromatographic zone – β-carotene. When using an another system of solvents – hexane-benzene ( 29:1 ) – it was made able to identify three pigmented bands, corresponding β-, γ-carotene and xanthophylls torulin and torularodyn whose presence was confirmed by spectrophotometric studies. In the study of retinol, sodium acetate and hydrogen peroxide influence on the biosynthetic ability of R. glutinis it was observed the catalytic effect of compounds on the carotenogenesis, with maximum changes shown when using hydrogen peroxide. It was established that the usage of R. glutinis as feed substrate causes an increase the carotenoid content in live feeds almost 2 times, and is accompanied by an increase in total protein content and a decrease in the share of total lipids. It should be noted that the replacement of the yeast S. cerevisiae to carotene-productional yeast do not significantly impacts on the growth dynamics of the culture S. vetulus. Analysis of physical and chemical characteristics of the culture medium showed minor fluctuations of dissolved oxygen and stable pH, redox potential, conductivity and total mineralization when growing S. vetulus on R. glutinis. This leads to the possibility of reducing the number of operations by control the quality of cultural medium, what can significantly simplify the technology of zooplankton saturation by carotenoids of microbiological origin.

Keywords: cultivation, Simocephalus vetulus, yeast, Rhodotorula glutinis, Saccharomyces serevisiae, carotenoids.

References

Біохімія гідробіонтів/ [Л.П. Вогнівенко, М.Ю. Євтушенко, М.В. Шевряков та ін.]. Херсон: Олді-плюс; 2009.

Биологически активные вещества пресноводных ракообразных: способы получения и перспективы применения. Мукатова М.Д., Привезенцев А.В., Боева Т.В., Юнес А.М.. Вестник АГТУ. Сер. Рыбное хозяйство. 2009; 2: 109–113.

Биотехнология культивирования гидробионтов. Романенко В.Д., Крот Ю.Г., Сиренко Л.А., Соло-матина В.Д. К.: Институт гидробиологии НАН Украины; 1999.

Блага О.М. Жирнокислотний склад природних і штучних кормів ставів. О.М. Блага, М.М. Цап, Й.Ф. Рівіс. Наук.-техн. бюл. Ін-ту біології тварин та Держ. н.-д. контрол. ін-ту ветпрепаратів та корм. добавок. 2008; 9(3): 11–20.

Продукты пищевые функциональные. Метод определения каротиноидов: ГОСТ Р 54058-2010. М.: Стандартинформ; 2011.

Чечета О.В. Методика определения каротиноидов методом хроматографии в тонком слое сорбента. О.В. Чечета, Е.В. Сафонова, А.И. Сливкин. Сор-бционные и хроматографические процессы. 2008; 8(2): 320–326.

Ben-Dor A. Carotenoids activate the antioxidant response element transcription system. [A. Ben-Dor, M. Steiner, L. Gheber et al.]. Mol. Cancer. Ther. 2005; 4(1): 177–186.

Bogut I. Nutritional value of planktonic cladoceran Daphnia magna for common carp (Cyprinus carpio) fry feeding. I. Bogut, Z. Adameck et al. Ribalstvo. 2010; 68(1): 2–12.

Britton G. Carotenoids: Handbook. G. Britton, S. Liaaen-Jensen, H. Pfander. Springer; 2004.

Carotenoids: physical, chemical, and biological functions and properties. Edit. John T. Landrum. CRC Press; 2009.

Chanchay N. Optimal conditions for carotenoid production and antioxidation characteristics by Rhodotorula rubra. N. Chanchay, S. Sirisansanuyarul, C. Chaiyasut, N. Poosaran. World academy of science, engineering and technology. 2012; 68: 8–29.

El-Banna A.A. Some factors affecting the production of carotenoids by Rhodotorula glutinis var. glutinis. Amr A. El-Banna, Amal M.Abd El-Razek, Ahmed R. El-Mahdy. Food and Nutrition Sciences. 2012; 3(1): 64–71.

Frengova G. Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. G. Frengova, E. Simova, K. Pavlova, D. Beshkova, D. Grigorova. Biotechnology and Bioengineering. 1994; 44: 888-894.

Frengova G.I. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. G.I. Frengova, D.M. Beshkova. J. Ind. Microbial. Biotechnol. 2009; 36: 163–180.

Latha B.V. Influence of growth factors on carote-noid pigmentation of Rhodotorula glutinis DFR-PDY from natural source. B.V. Latha, K. Jeevaratnam, H.S. Murali, K.S. Manja. Indian Journal of Biotechnology. 2005; 4: 353–357.

Lavens P. Manual on the production and use of live food for aquaculture. P. Lavens, P. Sorgeloos. Rome, FAO Fisheries Technical Paper; 1996.

Liu Y.S. Hydrogen peroxide induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Y.S. Liu, J.Y. Wu. Appl. Microbiol. Biotechnol. 2006; 73: 663-668.

Mata-Gómez L.C. Biotechnological production of carotenoids by yeasts: an overview. L.C. Mata-Gómez, J.C. Montañez, A. Méndez-Zavala et al.. Microbial Cell Factories. 2014; 13: 12–23.

Molinе M. Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts. Molinе M., Libkind D., van Broock M.. Methods Mol. Biol. 2012; 898: 275–283.

Stahl W. Bioactivity and protective effects of natural carotenoids. W. Stahl, H. Sies. Biochimica et Biophysica Acta. 2005; 1740(2): 101–107.

Tourniaire F. β-Carotene conversion products and their effects on adipose tissue. [F. Tourniaire, E. Gouranton, J. von Lintig et al.]. Genes Nutr. 2009; 4: 179–187.

Zooplankton methodology manual. Harris R.P., Wiebe P.H., Lenz J., Skjoldal H.R. et al. London: Academic Press; 2000.

Published

2014-06-30

Issue

Section

BIOCHEMISTRY, BIOTECHNOLOGY, MOLECULAR GENETICS