APPLICATION OF BIOSURFACTANTS IN WASTEWATER BIOFILTRATION TECHNOLOGY USING DAPHNIA MAGNA

Authors

  • L.V. Khuda Yuriy Fedkovych Chernivtsi National University
  • O.E. Frunza Управління Державного агентства меліорації та рибного господарства у Чернівецькій області
  • O.V. Karpenko Відділення фізико-хімії горючих копалин Інституту фізико-органічної хімії і вуглехімії ім. Л.М. Литвиненка
  • V.I. Lubenets Національний університет «Львівська політехніка»
  • O.O. Khudyi Чернівецький національний університет імені Юрія Федьковича

DOI:

https://doi.org/10.31861/biosystems2023.01.020

Keywords:

surfactants, trehalosolipids, Daphnia magna, biological treatment, wastewater

Abstract

When solving water purification problems, including for the needs of industrial fish farming, biofiltration methods involving planktonic organisms, in particular branchiopod crustaceans, deserve special attention. A specific filtration apparatus feeding daphnia can provide highly efficient wastewater treatment from suspended fine particles that have a low settling velocity and are not able to be retained on mechanical filters. An important advantage of this method of water treatment is the ability to use the resulting zooplankton biomass as live feed for fish farming.   The filtration properties of zooplankton can be improved by growing it in the presence of surfactants of biological origin, which, in addition, improve the absorption of nutrients by cladocerans and intensify their growth. In this study, the possibility of using a preparation of trehalosolipid biosurfactants obtained from the culture fluid of Rhodococcus erythropolis AU-1 for intensive growth of Daphnia magna culture for the purpose of biological treatment of water bodies was evaluated. It was established that the toxicity of trehalosolipids is dose-dependent, in particular, their minimum concentration at which the death of daphnia was observed within 24 hours of exposure was 300 mg/l, and the LC50 at the same duration of exposure was 479 mg/l. The maximum non-toxic concentration of the trehalosolipid biosurfactant is 200 mg/l. Concentrations of trehalosolipids in the range of 1-3 mg/l provide an increase in the density of daphnia culture by 1.3-1.7 times compared to the control. To evaluate the efficiency of biofiltration of Daphnia magna in the model experiment, water from the mechanical filter of the experimental recirculation system of the Yuriy Fedkovych Chernivtsi National University was used. The value of the optical density of the discharge water decreases by more than half after one day of daphnia presence in it, and after 4 days - by 7 times. The addition of biosurfactants leads to a more efficient filtration process, with the best results obtained when using the preparation with a concentration of 1 mg/l. The use of biosurfactants in concentrations of 1, 2 and 3 mg/l leads to a decrease in electrical conductivity and total mineralization compared to the control. At the same time, the pH and soluble oxygen content did not change compared to the control.

References

SSU 4173:2003 Water quality. Determination of acute lethal toxicity on Daphnia magna Straus and Ceridaphnia affinis Lilljeborg (Cladocera, Crustecea). Kyiv: Derzhspozhyvstandart Ukrainy, 2004. 17 p.

Koretska N.I., Midyana H.H., Karpenko O.V. Optimization of trehalose lypids extraction – metabolites of Rhodococcus erythropolis AU-1. Innov Biosyst Bioeng. 2018; 2(4): 246-251. https://doi.org/ 10.20535/ibb.2018.2.4.148935

Sabliy L.A. Physical, chemical and biological treatment of highly concentrated wastewater. Rivne: NUWGP. 2013. – 291 p.

Dockyu Kim, Ki Young Choi, Miyoun Yoo, Gerben J Zylstra, Eungbin Kim. Biotechnological Potential of Rhodococcus Biodegradative Pathways. J Microbiol Biotechnol. 2018; 28(7):1037-1051. https://doi.org/10.4014/jmb.1712.12017

Hyman M., Wang Q., Wilson A., Adhikari S., Higgins B. Production of Daphnia zooplankton on wastewater-grown algae for sustainable conversion of waste nutrients to fish feed. Journal of Cleaner Production. 2021; 310: 12750. https://doi.org/10.1016/j.jclepro.2021.127501

Khudyi О., Marchenko M., Cheban L., Khuda L., Kushniryk O., Malishchuk I. Recirculating aquaculture systems waste water as a medium for increase of phytoplankton and zooplankton biomass. International Letters of Natural Sciences. 2016; 54: 1–7. https://doi.org/10.18052/www.scipress.com/ILNS.54.1

Mir Sh, Jamal P, Alama MdZ, Mir AB, Ansari AH. Microbial surface tensio-active compounds: production and industrial application perspectives: a review. Int J Biotech Bioeng. 2017; 3(8):282-301. https://doi.org/10.25141/2475-3432-2017-8.0273

Pau C., Serra T., Colomer J., Casamitjana X., Lluı ́s S., Ruud K. Filtering capacity of Daphnia magna on sludge particles intreated wastewater. Water Research. 2013; 47: 181 -186. https://doi.org/10.1016/j.watres.2012.09.047

Serra T., Barcelona A., Pous N., Salvadó V., Colomer J. Disinfection and particle removal by a nature-based Daphnia filtration system for wastewater treatment. Journal of Water Process Engineering. 2022; 50: 103238. https://doi.org/10.1016/j.jwpe.2022.103238

Shiny K.J., Remani K.N., Nirmala E., Jalaja T.K., Sasidharan V.K. Biotreatment of wastewater using aquatic invertebrates, Daphnia magna and Paramecium caudatum. Bioresource Technology. 2005; 96: 55–58. https://doi.org/10.1016/j.biortech.2004.01.008

Published

2023-08-07

Issue

Section

BIOCHEMISTRY, BIOTECHNOLOGY, MOLECULAR GENETICS