EVALUATION OF THE EFFICIENCY AND PROSPECTS OF THE USE OF IRON NANOAQUACHELATE IN VITRO PLANT CULTURE

Authors

  • O.V. Subin Національний університет біоресурсів і природокористування України
  • A.A. Klyuvadenko Національний університет біоресурсів і природокористування України
  • O.V. Lobova Національний університет біоресурсів і природокористування України
  • A.F. Likhanov Національний університет біоресурсів і природокористування України

DOI:

https://doi.org/10.31861/biosystems2023.01.038

Keywords:

iron, Nicotiana tabacum, nutrient medium, nutrient medium, nanoaquachelates

Abstract

The paper presents studies of the effect of nanoaquachelate of iron on the growth processes of tobacco plants-regenerants in in vitro plant culture. Morphological features of Nicotiana tabacum L. shoots were compared with the use of FeEDTA, in conditions of its deficiency, and with the use of nanoaquachelate solutions. The peculiarities of the development of regenerating plants of tobacco in conditions of iron deficiency are shown.

It was established that under the conditions of long-term cultivation (28 days) with the use of iron nanoaquachelate at a concentration of 140 μg/ml, regenerating plants did not show any signs of inhibition of vital activity, chlorotic depigmentation or aging compared to the control.

Anatomical and histochemical features of regenerating plants of tobacco, which were cultivated on nutrient media with different forms and iron content, are shown.

References

Akhtar N, Ilyas N, Meraj TA, et al. Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials. 2022; 12(6): 965. https://doi.org/10.3390/nano12060965

Al-Mayahi AM. In vitro plant regeneration system for date palm (Phoenix dactylifera L.): Effect of chelated Iron Sources. Journal of Genetic Engineering and Biotechnology. 2021; 19(1). https://doi.org/10.1186/s43141-021-00177-4

Balk J, Pilon M. Ancient and essential: The Assembly of iron–sulfur clusters in plants. Trends in Plant Science. 2011;16(4):218-226. https://doi.org/10.1016/j.tplants.2010.12.006

Dalton CC, Iqbal K, Turver DA. Iron phosphate precipitation in Murashige and Skoog media. Physiol Plant. 1983; 57(4): 472-476. https://doi.org/10.1111/j.1399-3054.1983.tb02771.x

Haissig BE. Influences of auxin synergists on adventitious root primordium initiation and development. NZ J. For. Sci. 1974; 4: 311-323.

Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn,Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology. 2009; 12(3): 259-266. https://doi.org/10.1016/j.pbi.2009.05.006

Jalali M, Zargani M. The impact of nano Fe-chelate, Fe-EDDHA nonnano and FeSO4 on the growth and physiological index in lettuce (Lactuca sativa L.) varieties grown in NFT. J Bio Env Sci. 2014;4(2):434-442. https://doi.org/10.1080/01904167.2015.1043378

Jensen WA. Botanical Histochemistry: Principles and Practice. Freeman; 1962.

Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012; 63(1): 131-152. https://doi.org/10.114 6/annurev-arplant-042811-105522

Likhanov A, Chornobrov O, Kliuvadenko A, et al. Biotechnological aspects of creation collection in vitro of varieties raspberry in NUBiP Ukraine. Scientific reports of NULES of Ukraine. 2014; 5(47): 8-8.

Likhanov A, Kliuvadenko A, Subin O, et al. Gallic acid as a non-specific regulator of phenol synthesis and growth of regenerate plants of Corylus avellana (L.) H. Karst. and Salix alba L. in vitro. Ukrainian journal of forest and wood science. 2022; 13(4): 52-63. https://doi.org/10.31548/forest.13(4).2022.52-63

Maathuis FJM, Diatloff E. Roles and Functions of Plant Mineral Nutrients. In: Maathuis FJM, ed. Plant Mineral Nutrients. Methods in Molecular Biology. Vol 953. Humana Press; 2012: 1-21. https://doi.org/10.1007/978-1-62703-152-3_1

Maity A, Natarajan N, Vijay D, et al. Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Pro. Nat. Acad. Sci. India. Sect. B.: Biol. Sci. 2018; 88: 595-607. https://doi.org/10.1007/s40011-016-0796-x

Molassiotis AN, Dimassi K, Diamantidis G, et al. Changes in peroxidase and catalase activity during in vitro rooting. Biol Plantarum. 2004; 48(1): 1-5. https://doi.org/10.1023/B:BIOP.0000024267.68394.96

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum. 1962; 15: 473-497.

Oliynyk OО, Kluvadenko AА, Melnychuk MD. Optimization of culture media content for acceleration of growth and cultivation of Rosa Damascena Mill. in in vitro culture. Scientific bulletin of UNFU. 2016; 26(7): 134-139. https://doi.org/10.15421/40260721

Rajniak J, Giehl RF, Chang E, et al. Biosynthesis of redox-active metabolites in response to iron deficiency in plants. Nat. Chem. Biol. 2018; 14: 442-450. https://doi.org/10.1038/s41589-018-0019-2

Rout GR. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) kuntze and associated biochemical changes. Plant Growth Regulation. 2006; 48(2): 111-117. https://doi.org/10.1007/s10725-005-5665-1

Rout GR, Sahoo S. Role of iron in plant growth and metabolism. Rev Agric Sci. 2015; 3(0): 1-24. https://doi.org/10.7831/ras.3.1

Tivendale ND, Millar AH. How is auxin linked with cellular energy pathways to promote growth? New Phytologist. 2022; 233(6): 2397-2404. https://doi.org/10.1111/nph.17946

Xiao J, Park YG, Guo G, et al. Effect of iron source and medium pH on growth and development of Sorbus commixta in vitro. Int. J. Mol. Sci. 2021; 22: 133. https://doi.org/10.3390/ijms22010133

Pochinok HN. Methods of biochemical analysis of plants. Naukova dumka; 1976.

Furst GG. Methods of anatomical and histochemical research of plant tissues. Nauka; 1979.

Published

2023-08-07

Issue

Section

BIOCHEMISTRY, BIOTECHNOLOGY, MOLECULAR GENETICS