INVOLVEMENT OF BASALT TUFF AS A FLOCCULANT IN THE SEPARATION OF MICROALGAE MONORAPHIDIUM SP. BIOMASS

Authors

  • L.M. Cheban Yuriy Fedkovych Chernivtsi National University
  • V.V. Andriuk Yuriy Fedkovych Chernivtsi National University
  • M.M. Marchenko Yuriy Fedkovych Chernivtsi National University

DOI:

https://doi.org/10.31861/biosystems2023.01.086

Keywords:

basalt tuff, flocculant, biomass, Monoraphidium contortum

Abstract

For the first time, the paper considers the possibility of using basalt tuff as a flocculant for aggregation and sedimentation of the biomass of the green alga Monoraphidium sp. The sedimentation rate of algae biomass was analyzed when basalt tuff was added in concentrations of: 0.5 g/l, 1 g/l, 1.5 g/l, 2 g/l. The separation of settled biomass was carried out either by centrifugation or sedimentation. The percentage of separated cells from the fugat was determined.

A scheme for the separation of algae biomass has been developed, which includes: the use of basalt tuff as a flocculant at a concentration of 2 g/l, the ratio of the culture liquid of algae and flocculant is 25:1, settling the mixture for 48 hours, separating the fugat.

References

Bogen C., Klassen V., Wichmann J., La Russa M., et al. Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresource Technology. 2013; 133: 622-626. https://doi.org/10.1016/j.biortech.2013.01.164.

Brányikova I., Prochazkova G., Potocar T., Zuzana J., Branyik T. Harvesting of microalgae by flocculation. Fermentation.2018; 4(4): 93. https://doi.org/10.3390/fermentation4040093

Chen L., Wang C., Wang W., Wei J. Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system. Bioresource Technology. 2013; 133: 9-15. https://doi.org/10.1016/j.biortech.2013.01.071

Guiry M.D., Guiry, G.M. 2023. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org

Papazi A., Makridis P., Divanach P. Harvesting Chlorella minutissima using cell coagulants. J Appl Phycol. 2010; 22: 349–355. http://dx.doi.org/10.1007/s10811-009-9465-2

Ruggeri M., Godoy R., Arroyo P., Trevisan E. Evaluation of natural flocculant efficiency in the harvest of microalgae Monoraphidium contortum. SN Applied Sciences. 2021; 3: 627. https://doi.org/10.1007/s42452-021-04614-4.

Sobuś N., Czekaj I., Diichuk V., Kobasa I.M. Characteristics of the structure of natural zeolites and their potential application in catalysis and adsorption processes. Technical Transactions. 2020; 117(1): https://doi.org/10.37705/TechTrans/e2020043

Tsarenko P.M., Borysova O.V., Kharkhota M.A., Zelena L.B., Konischuk M.O., Burova O.V., Blume Ya.B. Monoraphidium sp. IBASU-A 574 (Selenastraceae, Chlorophyta) - a promising producer of biomass for bioenergy. Algologia 2022, 32(1): 88–104. https://doi.org/10.15407/alg32.01.088

Uduman N., Qi Y., Danquah M.K., Forde G.M., Hoadley A. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energy. 2010; 2: 15. https://doi.org/10.1063/1.3294480

Vandamme D., Foubert I., & Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 2013; 31(4): 233-239. https://doi.org/10.1016/j.tibtech.2012.12.005

Published

2023-08-07

Issue

Section

SHORT COMMUNICATIONS